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AIRCRAFT TRAJECTORY MODELING AND ALERTING ALGORITHM 

VERIFICATION* 

CESAR MUNOZ+  AND VICTOR CARRENO* 

Abstract. The Airborne Information for Lateral Spacing (AILS) program at NASA Langley Research 

Center aims at giving pilots the information necessary to make independent approaches to parallel runways 

with spacing down to 2500 feet in Instrument Meteorological Conditions. The AILS concept consists of 

accurate traffic information visible at the navigation display and an alerting algorithm which warns the 

crew when one of the aircraft involved in a parallel landing is diverting from the intended flight path. In 

this paper we present a model of aircraft approaches to parallel runways. Based on this model, we analyze 

the alerting algorithm with the objective of verifying its correctness. The formalization is conducted in the 

general verification system PVS. 

Key words, trajectory modeling, alerting algorithm, formal methods, theorem proving 

Subject classification. Computer Science 

1. Introduction. The Airborne Information for Lateral Spacing (AILS) [12, 3, 6] is a project being 

conducted at NASA Langley Research Center. Its objective is to reduce traffic delays and increase airport 

efficiency by enabling approaches to closely spaced parallel runways in Instrument Meteorological Conditions. 

Approaches to parallel runways are currently limited to 4300 feet in Instrument Meteorological Condi- 

tions. Specially equipped airports with fast scan radars, high resolution monitoring systems, and approach- 

specific air traffic controllers can perform parallel approaches to 3400 feet [14, 8]. The AILS project aims at 

shifting the responsibility of maintaining separation during parallel approaches from the air traffic controller 

to the aircraft crew. Via the AILS concept, approaches to parallel runways 2500 feet apart in Instrument 

Meteorological Conditions are expected. 

AILS eliminates the delay inherent in the communication between air traffic controller and crew by 

displaying parallel traffic information in the cockpit. The degree of safety is enhanced by an alerting system 

which warns the crew when one of the aircraft involved in a parallel landing is deviating from the intended 

flight path. The alerting algorithm is a critical part of the AILS concept. Flaws in its logic could lead to 

non-alerted collision incidents. The algorithm has been extensively tested in simulators and in real flights. 

The objective of this work is to conduct a formal analysis of the alerting algorithm in order to discover 

any possible errors that have not been detected during testing and simulation. In particular, we develop a 

formal model of parallel landing scenarios. Based on this model, we study the behavior of the AILS algorithm 

with respect to predictions of collision incidents. 

The formalization presented in this paper has been developed in the general verification system PVS 

[11]. We use a stylized-I^T^X PVS concrete syntax and assume the reader is familiar with standard notations 

of higher-order logic. 
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Langley Research Center, Hampton, VA 23681-2199, USA. 
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TABLE 2.1 

Alerting sequence 

Evader Intruder 

1 Localizer alert (one dot deviation) 

2 Localizer alert (two dot deviation) 

3 Caution alert (traffic) 

4 Caution alert (traffic) 

5 Warning alert (collision) 

6 Warning alert (collision) 

The remainder of this paper is organized as follows. Section 2 gives an overview of the AILS system. 

Section 3 describes the alerting algorithm and its abstraction in PVS. A formal model of aircraft trajectories 

is presented in Section 4. Section 5 contains the main properties that have been proven in PVS. Section 6 

summarizes our work and suggests future research directions. Finally, the appendix includes our PVS formal 

model which is electronically available at: http://shemesh.larc.nasa.gov/people/vac/ails.pvs. 

2. System Description. In a typical independent parallel approach, aircraft intersect their localizer 

track (longitudinal runway center) approximately 10 nautical miles from the runway threshold (see Fig- 

ure 2.1). During localizer intersection, aircraft have a 1000 feet vertical separation. After the aircraft are 

established in their localizer track, vertical separation is eliminated and aircraft start a normal glide path for 

landing. If an aircraft deviates from its airspace, the AILS system provides 6 alert levels, depending on the 

severity of the deviation. Table 2.1 shows an alerting sequence as seen in the evader and intruder aircraft 

primary and navigation displays. 

All alerts in the intruder aircraft are expected to be followed by a corrective maneuver. The evader 

aircraft is not expected to perform an evasive maneuver until a warning alert is issued, at which time landing 

is aborted and an emergency escape maneuver is performed. Notice that the intruder aircraft always receives 

a caution or warning alert before the respective caution or warning alerts are issued to the evader. A parallel 

runway approach is illustrated in Figure 2.1. 

Several assumptions were made in the development of the alerting algorithm. These assumptions are 

justified by physical characteristics and operational constraints. They are as follows: 

• Time is discrete and divided in increments of 0.5 seconds. We call this value tstep. 

• The algorithm is executed every tstep seconds. 

• The rate of turn is determined by the bank angle and ground speed. 

• The speeds of the aircraft are constant.  Henceforth, we use intruderSpeed and evaderSpeed as 

the constant speed values of the intruder and evader aircraft, respectively. 

• The AILS system starts operating when the aircraft are on their localizers. At this time the aircraft 

are approximately at the same altitude. 

• The vertical separation between the aircraft is assumed to be 0 during a landing approach. 

• Only the intruder aircraft will deviate from its path in a parallel approach. The evader aircraft stays 

in its localizer. 

It should be noted that the experimental AILS system, as currently designed, forms part of the Traffic 

Alert and Collision Avoidance System (TCAS) [13]. In this work, we assume that the AILS alerting algorithm 

is running in isolation from other aircraft components.   In addition, we concentrate on the caution and 
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FIG. 2.1. Parallel runway approach 

warning alerting kernel of the AILS alerting system. The one dot and two dot deviation alerts present a 

simple scenario and can be easily added to our model by a separate function as it is done in the current 

implementation. 

3. The AILS Alerting Algorithm. The alerting algorithm determines when an alarm will be trig- 

gered by calculating possible collision trajectories and comparing the future aircraft locations with predeter- 

mined time and distance thresholds. The algorithm is executed in two modes every tstep seconds: (1) the 

first mode assumes its own aircraft is a threat to the adjacent aircraft and the adjacent aircraft is following 

the localizer; (2) the second mode assumes the adjacent aircraft is a threat to its own and the own is following 

the localizer. In either mode, one aircraft is the intruder and one is the evader. 

When the intruder aircraft is not changing direction, i.e., its bank angle is 0, the algorithm determines 

if the two aircraft are diverging or converging and the point of closest separation. This is done by obtaining 

the derivative of the distance between the aircraft and solving for time when the derivative equals zero as 

follows. 

(3.1) Ax{t) = xin{t) - xev(t) 

(3.2) Ay(t) = yin(t) - yev(t) 

(3.3) — Ax(t) = intruderSpeed x cos(B) — evaderSpeed 

(3.4) — Ay(i) = intruderSpeed x sin{6) 

(3.5) B(t) = y/'A,(t)2 + Av(tf 

±m = A,(t)x|A,(f) + A»(l)x|A,(t) 
dt v^W 

For a time t, {xin(t),yin(t)) and (xev(t),yev(t)) are the coordinates of the intruder and evader aircraft, 

respectively, and 9 is the heading angle of the intruder aircraft. When j-tR{t + r) = 0, we get the time r, 

relative to t, of the point of closest separation of the aircraft. Time r has been calculated as 

,,~ Ax(t)x£Ax(t) + Ay(t)x±Ay(t) 
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FIG. 3.2. Radial trajectory and tangential tracks 

Equations 3.1 to 3.7 were formally deduced, from initial physical properties, by using the computer 

algebra tool MuPAD [4]. Notice that r is undetermined when the aircraft are parallel and the ground speeds 

are equal. In this case, the alerting algorithm defines r(t) = 0 for any t. 

For a time t, if r(£) is negative or zero, the tracks are diverging or parallel, respectively. If r(t) is greater 

than zero, the tracks are converging and r(t) will be the time of closest separation (Figure 3.1). When tracks 

are diverging or parallel, the algorithm checks the aircraft separation at the present time against the alert 

threshold distances (cdist and wdist in Figure 2.1). When tracks are converging, the algorithm compares 

the time and distance of closest separation against time and distance thresholds, respectively. 

When the intruder aircraft is changing direction, i.e., its bank angle is not 0, the algorithm calculates 

the radius of the turn and the rate of change of direction. Tangential tracks are calculated from the arc path 

as to produce tangents which arc 1.5° to 3° in angular separation (Figure 3.2). For each of these tangential 

tracks the algorithm determines whether the two aircraft tracks are diverging or converging and performs 

time and distance comparisons as explained above. 

The original AILS algorithm was written in FORTRAN at Langley Research Center. It has been revised 

several times and the latest version flown in the Boeing 757 experimental aircraft was provided by Honeywell. 

For the work presented in this paper, we created a high level abstract model of the alerting algorithm in 

the PVS language. The algorithm model uses the same strategy as the FORTRAN algorithm to determine 

if alarms are triggered, as explained above. All of the PVS declarations involved in the modeling of the 

algorithm can be seen in the theory file available at http://shemesh.larc.nasa.gov/people/vac/ails. 

pvs. 

The model of the algorithm is a function which takes the states of the aircraft and returns a boolean 



value corresponding to whether the alarm is triggered or not. The type of the alarm, caution or warning, 

depends on the threshold parameters. The state of the aircraft is defined by a record: 

state   :  TYPE 

real, 

real, 

[-180. ..180] 

[-45...45] 

[#    x 

y 

heading 

phi 

#] 

We recall that access to records are written in PVS as function calls, i.e., if s is a state, x(s) refers 

to the field x of the state s. Thus, x(s) and y(s) are the position coordinates, heading(s) is the angle 

between the flight path and the localizer track which range between —180° and 180°, and phi(s) is the 

aircraft bank angle between —45° and 45°. 

The model of the alerting algorithm is given next. 

larcalert(evader.intruder:state):   bool = 

LET phi = phi(intruder)   IN 

LET trkrate = gx (180/7r) xtand(phi)/intruderSpeed  IN 

IF trkrate = 0 THEN '/. Direction is not changing. 

chktrack(O) '/. Check strait tracks. 

ELSE '/. Direction is changing 

LET arcrad = '/. Calculate  arc radius. 

intruderSpeed2/(gxtand(phi)) IN 

LET maxstep = alert_time/tstep IN 

LET idtrk = 

IF abs (trkrate)   > 3-THEN 1 '/. This determines 

ELSIF abs (trkrate)   >  1+1/2 THEN 2        '/. how often 

ELSIF abs (trkrate)   > 3/4 THEN 4 '/. tangential 

ELSE 8 '/. tracks are 

ENDIF     IN '/,  calculated, 

arc_loop(evader,intruder,arcrad,trkrate,idtrk,0.maxstep) 

ENDIF 

where g is the gravitational acceleration constant (approx. 32.2 feet/seconds2). 

The first part of the function is exercised when the track rate (trkrate) is zero and there is no change 

in the intruder's heading. The chktrack function is used to determine if an alarm will be triggered. The 

function chktrack makes the calculation for converging or diverging tracks, according to Equations 3.1 

to 3.7. If the tracks are diverging, the function chkrange is called to compare present locations against time 

and distance threshold (ctime and cdist, respectively). If the tracks are converging, predicted locations at 

caution time or time of closest separation, whatever is smaller, are compared. The structure of the definitions 

of chkrange and chktrack are given next. 

chkrange(range,t:real) :   bool = 

range   <   cdist  A  t  <  ctime 

chktrack(t:real):   bool  = 

LET range  = iJ(t)   IN 



LET tau  = r{t)   IN 

IF tau  <  0 THEN '/. Tracks  are  diverging   (or parallel) . 

chkrange(range,t) '/. Check range at prediction time t. 

ELSE '/• Tracks  are  converging. 

IF t+tau > ctime THEN        '/. Closest  separation beyond caution alert time. 

Ä(ctime)   <  cdist '/. Check range at caution threshold. 

ELSE '/• Closest separation within caution alert time. 

R(t+tau)   <  cdist '/, Check range at time of closest  separation. 

ENDIF 

ENDIF 

The second part of the function larcalert handles the case when intruder is changing direction. The arc 

radius is calculated and the function arcloop generates the tangential tracks from the arc trajectory. The 

function arcloop is a recursive function modeling a DO-LOOP statement. It is used to iterate the function 

chktrack on tangential tracks every idtrk time steps. Its actual definition is too long to be included in the 

paper and can also be seen in the theory file as pointed above. The structure of the function is: 

arc_loop(evader,intruder,arcrad,trkrate,idtrk,iarc.maxstep):   RECURSIVE bool = 

calculate positions  of aircraft 

IF    not  time for a tangential  track THEN 

IF chkrange (...)   THEN        '/. Check range at that point. 

TRUE '/. Trigger  an alarm. 

ELSE 

arc_loop(. . .) '/. Go to new iteration. 

ENDIF 

ELSE '/, Time for tangential tracks. 

IF chktrk(...)  THEN '/. Check track at this point. 

TRUE '/. Trigger an alarm. 

ELSE 

arc_loop(. . .) '/■ Go to new iteration. 

ENDIF 

ENDIF 

Based on the idtrk argument and the step in the loop iarc, the function arcloop determines if a 

tangential track is calculated or not. If a tangential track is not calculated, the function chkrange compares 

the distance between the calculated positions of the aircraft and the distance threshold. The function chktrk 

is used to check for collisions on all the tangential tracks in the loop. The function arcloop terminates 

when one of the functions chkrange or chktrack triggers an alarm or when iarc has reached maxstep. 

In the PVS model, we are using an axiomatic definition of the square root function (sqrt, see Section 

5). Trigonometric functions (sind, cosd, and tand, for sine, cosine, and tangent of angles in degrees, 

respectively) are defined by series approximations. However, as we will see in Section 5, we also provide 

axioms about trigonometric functions to facilitate the proofs. 

As we have seen, the AILS algorithm considers a limited set of possible trajectories for the intruder 

aircraft, i.e., assuming a constant radius turn at the original bank angle, only tangent track escapes to the 

turn arc are considered. The developers of the algorithm state that this assumption is reasonable under 

normal circumstances, i.e., the intruder aircraft is not intentionally trying to collide with the evader aircraft. 

However, to evaluate the behavior of the algorithm in a wider range of possible landing scenarios, a more 



general model of trajectories for the intruder aircraft is necessary. In the next section, we develop such a 

model. 

4. Parallel Landing Scenarios. According to the characteristics and assumptions of the AILS algo- 

rithm, we propose a time-discrete model with time increments of tstep seconds. 

In our model of trajectories, as in the case of the alerting algorithm, intrusion paths are determined by 

the bank angle and ground speed of the intruder aircraft. Given a ground speed gs > 0, a bank angle <j>, the 

heading turn rate is given by 

tand(4>) x g x 180 
trkratefgs, ffl) =  , 

gs X 7T 

where g is the gravitational acceleration constant. 

Although under normal operation the bank angle of a commercial aircraft is limited to —30° to 30°, we 

allow the bank angle to range from —45° to 45°. For a minimum ground speed of 180 feet per second, it 

means a maximum heading turn rate of about 6° per second. These data produce very aggressive blundering 

situations quite consistent with worst cases scenarios tested by the AILS developing group. Incidentally, the 

function trkrate is well-defined for bank angles in the range [—45 .. .45]. 

DEFINITION 4.1 (Intruder trajectory). An intruder trajectory of length n for an aircraft with state s 

and ground speed gs is a sequence of states SQ ... sn such that so = s and for 0 < i < n, 

1. \phi{Si)\ < 45, 

2. \heading(si) — heading{si-\)\ = tstep x trkrate(gs,phi(si)), 

3. x(si) = x(si-i) + gs x tstep x cosd(heading(Sj)), and 

J. y(si) = T/(,Sj__i) + gs x tstep x sind(heading(si)). 

In PVS, we define the next state of an intruder aircraft at state s and bank angle (/> by the function 

next_intruder_state(s:state,0:[-45...45] ):   state  = 

LET trk = heading(s)   + tstepX trkrate (intruderSpeed,phi (s))   IN 

s WITH   [ 

x := x(s)  + intruderSpeedxtstepXcosd(trk) , 

y := y(s)  + intruderSpeed xt step x sind (trk) , 

heading       := trk, 

phi := (j> 

] 

We recall that WITH is the record (and function) overriding operator in PVS. 

We model an intruder trajectory by a recursive function having as parameters an initial state s, a bank 

angle assignation for each iteration step df, and the iteration step n, as follows 

intruder_trajectory(s:state,   df:[posnat—>[-45...45]] ,   n:nat): 

RECURSIVE  state  = 

IF n = 0 THEN  s 

ELSE 

LET  sn = next_intruder_state(s,   df(n))   IN 

intruder_traj ectory(sn,df,n-1) 

ENDIF 

MEASURE n 



For example, given an intruder aircraft at initial state s and bank angle equal to 0, a trajectory of length 

n such that the plane follows a straight line to its current heading angle is given by s0 . ..sn, where s0 = s 

and for 0 < i < n, 

Si — intruder_trajectory(s, A(n : posnat) : 0,i). 

For the evader aircraft, we assume that it stays in its localizer with a constant speed and constant 

heading of 0°. Heading and bank angles are irrelevant in the definition of an evader trajectory. 

DEFINITION 4.2 (Evader trajectory). An evader trajectory of length n for an aircraft with state s and 

ground speed gs is a sequence of states so ... sn such that so = s and for 0 < i < n, 

1. x{.Si) — x(si-i) + gs x tstep and 

2- y(si) = y(s0)- 

For an initial state s of an aircraft, its state after n steps in a evader trajectory is defined by evader_traj ectory (s, n) 

as follows 

evader_trajectory(s:state,   n:nat):   state = 

(# 
x(s)   + evaderSpeedXtstepXn, 

y(s), 
heading(s), 

phi(s) 

x 

y 

heading 

phi 

#) 

We are interested in trajectories leading to collision incidents. Aircraft are said to be in collision if the 

distance between them is less than or equal to collisionRange. In our development, we consider 200 feet 

for collisionRange, which is approximately the wing span of a Boeing 747. 

distance(si,s2:state):   real = 

sqrt((x(s2)-x(sl))2 + (y(s2)-y (si))2) 

collision(sl,s2:state):   bool  = 

distance(si,s2)   < collisionRange 

DEFINITION 4.3 (Collision scenario). Given an intruder trajectory so .. .sn and an an evader trajectory 

to .. ■ tn, we said that they lead to a collision incident at step i, for 0 < i < n, if collision(si,ti) holds. 

In PVS, 

collision_scenario(intruder,evader:state,   df: [posnat—¥ [-45...45]], 

imat) :bool = 

collision(intruder_trajectory(intruder,df,i), 

evader_trajectory(evader,i)) 

We have implemented the model of trajectories, together with our high-level version of the alerting 

algorithm, in Java.  The implementation, available in the same location as the PVS theory files, serves a 

double purpose. First, it allows us to visualize all the collision trajectories for a given time and initial values 

of the intruder and evader aircraft. Second and more importantly, by studying those trajectories, we were 

able to extract conjectures that we have then formally proven in PVS. Conversely, as we will mention later, 

we have rejected some conjectures by finding counter-examples via simulation of collision trajectories, 



In the next, section, we address the formal verification of properties of collision trajectories for our model 

in PVS, and we study the behavior of the alerting algorithm with respect to that model. 

5. Main Properties. The objective of this modeling and verification work is (i) to show that the 

method implemented in the algorithm to predict trajectories and trigger alarms is adequate and does not 

lead to dangerous situations, or (ii) to explore possible trajectory scenarios which lead to unacceptable risk. 

To this effect we created models of the algorithm and aircraft trajectories in PVS, created simulations in 

JAVA to visualize the behavior and characteristics of the landing scenario, and verified in the computer 

algebra tool MuPAD some axiomatic definitions we made in PVS. 

Before stating the main properties, it should be said that most of the proofs require reasoning on 

continuous mathematics. We have assumed some uninterpreted functions and axioms in PVS, for instance 

sqrt(x:real)   :   {z:real   I  z2 = x and z > 0} 

sin_cos_sq_one   :   AXIOM 

V (x:real):   sind(x)2  + cosd(x)2 = 1 

More involved properties, grounded on Equations 3.1 to 3.7, are also necessary, e.g., 

derivative_eq_zero_min   :   AXIOM 

V (tl,t2:real):   i?(tl+r(tl))   < Ä(tl+t2) 

asyraptotic_decrease_zero_to_tau   :  AXIOM 

V (t,tl,t2:real)   : 

r(t)   > 0 A t2  < r(t)  A tl  < t2 

i?,(t+tl)   > Ä(t+t2) 

asymptotic_increase_tau_to_zero   :   AXIOM 

V (t,tl,t2:real)    : 

-r(t)   < 0 A t2  > r(t)   A tl  > t2 

i?.(t+tl)   > i?.(t+t2) 

Axiom derivative_eq_zero_min states that at time t, r(t) would be the time of closest separation 

between the aircraft. Axioms asymptotic_decrease_zero_to_tau and asymptotic_increase_tau_to_zero 

state that function R asymptotically decreases for times less than r(i) and asymptotically increases for 

times greater than r(t), respectively. As we have mentioned before, the equations of Section 3 have been 

symbolically deduced in MuPAD. 

Our intention is to show that for all aircraft trajectories which lead to a collision and all initial states1, 

an alarm is issued i seconds before a collision. In our formal development, we have found upper and lower 

bounds for the values of i. 

One of the first properties that we have proven is that an alarm (caution or warning) is triggered when 

the distance between the aircraft is within the alerting range (cdist or wdist, respectively). This property 

holds independently of the values of any other state variables of the aircraft. 

1 Recall from Section 2 that initial states are when the aircraft are on their localizers. 



alarm_when_alerting_distance   :  THEOREM 

V (evader,intruder:state)   : 
alerting_distance(evader,intruder)   => larcalert(evader,intruder) 

The theorem above puts the greatest lower bound on the elapsed time between an alert and a collision 

that we have found so far. For an alerting distance of 1400 feet and an intruder ground speed of 250 feet 

per second this results in an alarm at least 4 seconds before collision. 

An effort to prove that a caution is issued for a value of (ctime-1) (ctime being defined as 19 seconds) 

resulted in an unprovable conjecture. Indeed, we have found a counter example of a collision trajectory 

which allows two aircraft to' fly to a distance of less than 1300 feet, without triggering an alarm 11 seconds 

before the collision. 

move_2500_to_1300_no_alarm_before_ll_seconds   :  THEOREM 

3   (intruder,evader:state,   df: [posnat—> [-45. . .45]] ,  n:nat)   : 

collision_scenario(intruder.evader,df,n+ll/tstep)   A 

distance(indruder,evader)   = 2500 A 

distance(intruder_traj ectory(intruder,df,n), 

evader.trajectory(evader,n))   <  1300  A 

V (i:[0...n]): 

-i larcalert (evader.trajectory (evader ,i) , 

intruder_traj ectory(intruder,df,i)) 

By combining these theorems, we can state that for some trajectories an alarm will sound no more than 

11 seconds before collision and that for all cases an alarm will sound at least 4 seconds before a collision. We 

believe that for all cases the greatest-lower bound time when the alarm will sound prior to a collision is closer 

to 11 than to 4. In order to reveal that bound, we need to find strong invariants on collision trajectories. 

Notice, for example, that for an intruder trajectory So ...sn and an evader trajectory t0 ... tn, it cannot be 

the case that they lead to a collision incident at step n when distance(,s0,tn) > R, where 

R — collisionRarige+intruderSpeedxnxtstep. 

Indeed, any intruder aircraft out of the circle of center (x(£n) ,y(i„)) and radius R, needs a larger time 

than nxtstep to reach any point of the circle of center (x(tn) ,y(£n)) and radio collisionRange. The 

property above can be expressed in PVS as follows. 

collision.invariant : LEMMA 

V (intruder,evader:state, df: [posnat—»-[-45. . .45]] , n:nat) : 

collision_scenario(intruder.evader,df,n) 

V (i:[0...n]): 
distance(intruder_traj ectory(intruder,df,i), 

evader_trajectory(evader,n))   < 

collisionRange+intruderSpeedx (n-i) Xtstep 

The proof of this invariant requires the following lemmas. 

straight_line_farthest: LEMMA 

V (intruder:state,df:[posnat-+[-45...45],n:nat) : 

LET straight_trajectory = A(n:posnat):0 IN 

10 



distance(intruder, 

intruder_traj ectory(intruder,df,n)) < 

distance(intruder, 

intruder_trajectory(intruder,straight_traj ectory,n)) 

absolute_distance: LEMMA 

V (intruder:state,n:nat) : 

phi(intruder)=0 

=> 

LET straight.trajectory = A(n:posnat):0 IN 

distance(intruder, 

intruder_traj ectory(intruder,straight_traj ectory,n)) 

=  intruderSpeedxnXtstep 

Lemma straight_line Jarthest states that an intruder trajectory following a straight lines reaches a point 

farthest than any other trajectory, while Lemma absolute_distance states that the length of an intruder 

trajectory following a straight line is the same as intruderSpeedxnXtstep. 

We intend to use the above invariant and lemmas, together with properties derived from the physical 

trajectories, to find a bound greater than 4 seconds for any collision scenario. Under particular assumptions 

of the intruder bank angle (given by the function df), we have proven that there exists a point outside of 

the alerting threshold range where the alarm is issued. The conjecture is expressed in PVS as follows 

bound : CONJECTURE 

V (intruder,evader:state, df: [posnat-»[-45. . .45]] , n:nat) : 

collision_scenario(intruder.evader,df,n) 

=$> 

3(i:[0...n]) : 

-i alerting_distance(evader_traj ectory (evader ,i), 

intruder_trajectory(intruder,df,i))   A 

larcalert(evader_traj ectory(evader,i), 

intruder_traj ectory(intruder,df,i)) 

We are trying to generalize the proof for an arbitrary value of df. If the attempt is successful, it gives a new 

greatest lower bound of 5 seconds. 

6. Conclusion. Several case studies have been performed on the application of hybrid automata to 

the modeling of systems which include continuous and discrete domains. In particular, a simplified TCAS 

system was modeled in [9] using hybrid automata. That work focuses on establishing a hybrid model of the 

closed loop system formed by several aircrafts flying under TCAS assumptions. Although it is claimed that 

the model is suitable for formal analysis, there is no explicit attempt to automate the proof process. On the 

other hand, state exploration techniques have been used to analyze the system requirements specification of 

TCAS II written in RSML [7]; we refer for instance to [5, 2]. These works focus on the reactive aspect of 

the whole system. 

In the work presented in this paper, we constructed a formal model of the kernel of an alerting algorithm 

and we studied its behavior with respect to a model of collision trajectories. In our analysis, we assumed 

that the alerting algorithm runs in isolation of the other components of the system. We defer the integration 

of the alerting algorithm with rest of the system, for example TCAS, for future research. 

An abstract model of the algorithm and its properties were developed in the general verification system 
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PVS. We complemented the prover capabilities with computer algebra tools. Indeed, differential equations, 

resulting from physical phenomena, were mechanically verified in MuPAD. Models of the algorithm and 

collision trajectories were implemented in Java. The implementation allowed us to explore collision scenarios 

before performing rigorous attempts to prove properties. 

Although we have confidence in the conjectures that have been declared as axioms, work is being per- 

formed [10] in the development of a PVS library on transcendental functions which complements a previous 

work on mathematical analysis in PVS [1]. Hence, it might be possible in the near future to replace the 

axiomatic definitions with theorems. 

Lower and upper bounds for a time when an alarm will be issued before a collision were found. Our 

immediate goal, in the verification of the AILS algorithm, is to prove certain facts about, the characteristics 

of the aircraft trajectories. We hope that these facts allow us to prove the adequacy of the alerting algorithm 

for a time large enough to avoid any possible collision incident. 
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Appendix. The AILS Alerting Algorithm in PVS. 

AILS Alerting Algorithm in PVS 

Victor Carreno (v.a.carreno@larc.nasa.gov) 

Cesar Munoz (raunoz@icase.edu) 

ICASE - NASA Langley Research Center 

This model is an abstraction of the algorithm written by 

Bill Capron 

NASA Langley Research Center 

and described by 

Mike Jackson 

Honeywell Technology Center 

Assumptions 

* Coordinate system: 

+—>x  —> landing direction 

* Two dimensional 

* Ground speed is constant 

AILS : THEORY 

BEGIN 

•/.—  Types 

Bank : TYPE = subrange(-45,45) 

deg_heading : TYPE = subrange(-180,180) 

State: type = 

[# x 

y 
heading 

real, 

real, 

deg_heading, 
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phi Bank 

#] 

'/„— Constants 

collisionRange 

alertTime 

alertRange 

intruderSpeed 

evaderSpeed 

tstep 

divtstep(x:real) 

maxStep 

g 

real = 200 

real = 19 

real = 1000 

real = 250 

real = 250 

real = 1/2 

real = x*2 

real = 1 + divtstep(alertTime) 

real = 32+2/10 

'/,— Variables 

intruder, 

evader VAR State 

df VAR [posnat->Bank] 

phi VAR Bank 

s,sl,s2 VAR State 

x,range VAR real 

t,tl,t2 VAR real 

n VAR nat 

m VAR posnat 

iarc VAR subrange(0,maxStep) 

arcrad.trkrate VAR real 

idtrk VAR posnat 

'/„— Useful functions 

pi : real = 3141592/1000000 

cosd(x): real 

= LET r = x*pi/180 IN 

1 - expt(r,2)/2 + expt(r,4)/24 - expt(r,6)/720 + expt(r,8)/40320 

sind(x) : real 

= LET r = x*pi/180 IN 

r - expt(r,3)/6 + expt(r,5)/120 - expt(r,7)/5040 + expt(r,9)/362880 

tangent_well_defined : AXIOM 
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FORALL (phi) : cosd(phi) /= 0 

tand(phi): real = 

sind(phi)/cosd(phi) 

mod(n,m): RECURSIVE nat = 

IF n < m THEN n 

ELSE mod(n-m,m) 

ENDIF 

MEASURE n 

sq(x): nonneg_real = x*x 

sqrt_well_defined : AXIOM 

FORALL (x:noimeg_real): 

nonempty?({z:nonneg_real I z*z = x}) 

sqrt(x:nonneg_real) : {z:nonneg_real I z*z = x} 

distance(sl,s2): real = 

sqrt(sq(x(s2)-x(sl)) + sq(y(s2)-y(sl))) 

collision(sl,s2): bool = 

distance(sl,s2) <= collisionRange 

alerting_distance(sl,s2): bool = 

distance(sl,s2) <= alertRange 

trkrate(phi): real = 

IF phi = 0 then 0 

ELSE 1845*tand(phi)/intruderSpeed 

ENDIF 

dx(intruder,evader,t): real = 

(x(intruder) + t*intruderSpeed*cosd(heading(intruder))) 

(x(evader) + t*evaderSpeed) 

dy(intruder,evader,t): real = 

(y(intruder) + t*intruderSpeed*sind(heading(intruder))) 

y(evader) 

dxdt(intruder): real = 

intruderSpeed*cosd(heading(intruder)) - evaderSpeed 
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dydt(intruder): real = 

intruderSpeed*sind(heading(intruder)) 

R(intruder.evader,t): real = 

sqrt(sq(dx(intruder,evader,t)) + sq(dy(intruder.evader,t))) 

tau(intruder.evader,t):real = 

LET div = sq(dxdt(intruder)) + sq(dydt(intruder)) IN 

IF div = 0 THEN 0 

ELSE 

-(dx(intruder,evader,t) * dxdt(intruder) + 

dy(intruder,evader,t) * dydt(intruder))/div 

ENDIF 

'/.— Alerting algorithm 

chkrange(range.t): bool = 

range <= alertRange AND t <= alertTime 

chktrack(intruder,evader,t): bool = 

LET tau = tau(intruder,evader,0) IN 

IF tau <= 0 THEN 7. tracks are diverging (or parallel) 

chkrange(R(intruder,evader,0) ,t) '/, check range at prediction time t 

ELSIF t+tau > alertTime THEN      '/. tracks are converging 

R(intruder,evader,alertTime)    7. closest approach beyond alert time 

<= alertRange 7. check range at alert threshold 

ELSE 7, closest approach within alert time. 

R(intruder,evader,tau) '/,  check range at closest approach. 

<= alertRange 

ENDIF 

arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc): RECURSIVE bool = 

IF iarc = maxStep THEN false 

ELSE 

LET tpred = iarc*tstep IN 

LET xloc = x(evader) + evaderSpeed*tpred IN 

LET yloc = y(evader) + evaderSpeed*tpred IN 

'/."/.  There are two cases trkrate > 0 or trkrate < 0 

LET (xtrk.ytrk) = 

IF trkrate > 0 THEN 

(x(intruder) + arcrad*(sind(heading(intruder)+trkrate*tpred) - 

sind(heading(intruder))) , 
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y(intruder) + arcrad*(cosd(heading(intruder))- 

cosd(heading(intruder)+trkrate*tpred))) 

ELSE 

(x(intruder) + arcrad*(sind(heading(intruder)) - 

sind(heading(intruder))+trkrate*tpred), 

y(intruder) + arcrad* (cosd(heading(intmder)+trkrate*tpred)- 

cosd(heading(intruder)))) 

ENDIF IN 

IF NOT mod(iarc,idtrk) = 0 THEN    '/, not time for tangential track 

LET range = sqrt(sq(xtrk-xloc) + sq(ytrk-yloc)) IN 

IF chkrange(range,tpred) THEN true 

ELSE arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc+1) 

ENDIF 

ELSE '/, tangential track 

LET tantrk = heading(intruder) + tpred*trkrate IN 

LET int = intruder WITH [x:=xtrk, y:=ytrk, heading:=tantrk] IN 

LET eva = evader  WITH [x:=xloc, y:=yloc] IN 

IF chktrack(int,eva,tpred) THEN true 

ELSE arc_loop(intruder,evader,arcrad,trkrate,idtrk,iarc+1) 

ENDIF 

ENDIF 

ENDIF 

MEASURE (maxStep - iarc) 

larcalert(intruder,evader): bool = 

LET phi = phi(intruder) IN 

LET trkrate = trkrate(phi) IN 

IF trkrate = 0 THEN 

chktrack(intruder,evader,0) 

ELSE 

LET arcrad = sq(ihtruderSpeed)/(g*tand(phi)) IN 

LET idtrk = 

IF trkrate >= 3 THEN 1 

ELSIF trkrate >= 1 + 1/2 THEN 2 

ELSIF trkrate >= 3/4 THEN 4 

ELSE 8 

ENDIF IN 

arc_loop(intruder,evader,arcrad,trkrate,idtrk, 0) 

ENDIF 

%— Model of trajectories 

next_intruder_state(s,phi): State = 
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LET trk = heading(s) + tstep*trkrate(phi(s)) IN 

s WITH [ 

x 

y 
heading 

phi 

] 

= x(s) + intruderSpeed*tstep*cosd(heading(s)), 

= y(s) + intruderSpeed*tstep*sind(heading(s)), 

= trk, 

= phi 

intruder_trajectory(s,df,n): RECURSIVE State = 

IF n = 0 THEN s 

ELSE 

next_intruder_state(intruder_trajectory(s, df, n-l).df(n)) 

ENDIF 

MEASURE n 

evader_trajectory(s,n): State = 

(# 

x        := x(s) + evaderSpeed * tstep * n, 

y := y(s), 
heading := heading(s), 

phi := phi(s) 

#) 

collision_scenario(intruder,evader,df,n): bool = 

collision(intruder_trajectory(intruder,df,n) , 

evader_traj ectory(evader,n) ) 

'/,— Axioms 

sin_cos_sq_one : AXIOM 

FORALL (x): 

sq(sind(x)) + sq(cosd(x)) = 1 

derivative_eq_zero_min : AXIOM 

FORALL (intruder,t1,t2): 

R(intruder,evader,t1+tau(intruder,evader,t1)) <= 

R(intruder,evader,tl+t2) 

asymptotic_decrease_zero_to_tau : AXIOM 

FORALL (t,tl,t2:real) : 

tau(intruder,evader,t) >= 0 AND t2 <= tau(intruder,evader,t) AND 

tl <= t2 

IMPLIES 
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R(intruder,evader,t+tl) >= R(intruder,evader,t+t2) 

asymptotic_increase_tau_to_zero : AXIOM 

FORALL (t,tl,t2:real) : 

tau(intruder,evader,t) <= 0 AND tau(intruder,evader,t) <= tl AND 

tl <= t2 

IMPLIES 

R(intruder,evader,t+t2) >= R(intruder,evader,t+tl) 

'/,— Theorems and Properties 

sqrt_of_sq: theorem 

(sqrt(sq(x))) = abs{x) 

phi_not_0_tan_not_0 : theorem 

NOT phi = 0 implies not tand(phi) = 0 

alarm_at_alerting_distance : THEOREM 

FORALL (evader.intruder) : 

alerting_distance(evader,intruder) 

IMPLIES 

larcalert(intruder,evader) 

move_2500_to_1300_no_alarm_before_ll_seconds : THEOREM 

EXISTS (intruder,evader,df,n) : 

collision_scenario(intruder,evader,df,n+divtstep(11)) AND 

distance(intruder.evader) = 2500 AND 

distance(intruder_trajectory(intruder,df,n), 

evader_trajectory(evader,n)) <= 1300 AND 

FORALL (i:subrange(0,n)) : 

NOT larcalert(intruder_trajectory(intruder,df,i), 

evader_traj ectory(evader,i)) 

collision_invariant : LEMMA 

FORALL (intruder,evader,df,n) : 

collision_scenario(intruder,evader,df,n) 

IMPLIES 

FORALL(i:subrange(0,n)): 

distance(intruder.trajectory(intruder,df,i), 

evader_trajectory(evader,n)) <= 

collisionRange+intruderSpeed*(n-i)*tstep 

straight_line_farthest: LEMMA 
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FORALL (intruder.evader,df,n) : 

LET straight_trajectory = LAMBDA(n:posnat):0 IN 

distance(intruder, 

intruder_.traj ectory (intruder, df,n)) <= 

distance(intruder, 

intruder_traj ectory(intruder,straight_traj ectory,n)) 

absolute_distance: LEMMA 

FORALL (intruder,n) : 

phi(intruder)=0 

IMPLIES 

LET straight_trajectory = LAMBDA(n:posnat):0 IN 

distance(intruder, 

intruder_trajectory(intruder,straight_traj ectory,n)) 

= intruderSpeed*n*tstep 

bound : CONJECTURE 

FORALL (intruder,evader,df,n) : 

collision_scenario(intruder.evader,df,n) 

IMPLIES 

EXISTS(i:subrange(0,n)) : 

NOT alerting_distance(evader_trajectory(evader,i), 

intruder_trajectory(intruder,df,i)) AND 

larcalert ( intruder_.tr a j ectory (intruder, df,i) , 

evader_traj ectory(evader,i)) 

END AILS 
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